LEUKEMIA2022

Rome, Hotel NH Collection - Vittorio Veneto

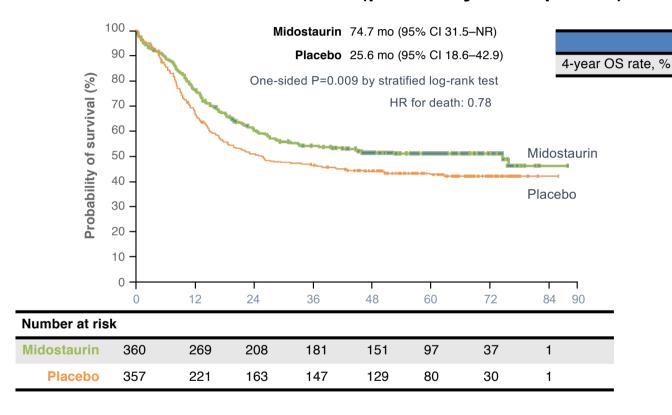
May 5-6, 2022

AlL President: G. Toro Coordinators: A.M. Carella, S. Amadori

Agenda

- 1. Flt mut
- 2. IDH1 mut
- 3. Immune-therapy: Immune check-point based approaches

AIL President: G. Toro
Coordinators: A.M. Carella, S. Amadori

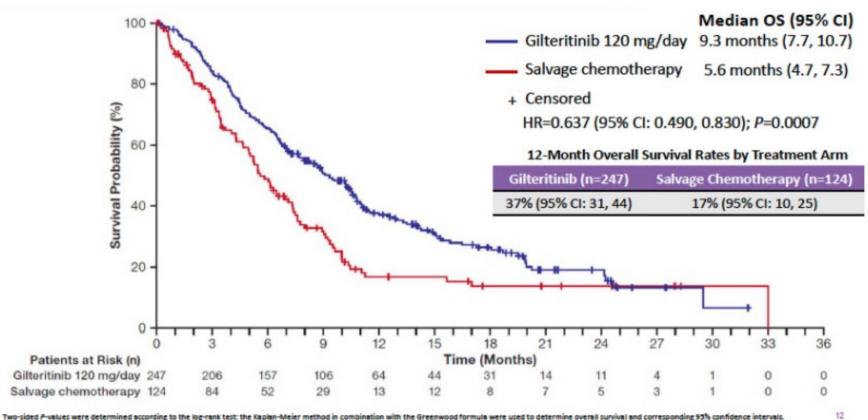

Placebo

44.3

Midostaurin

51.4

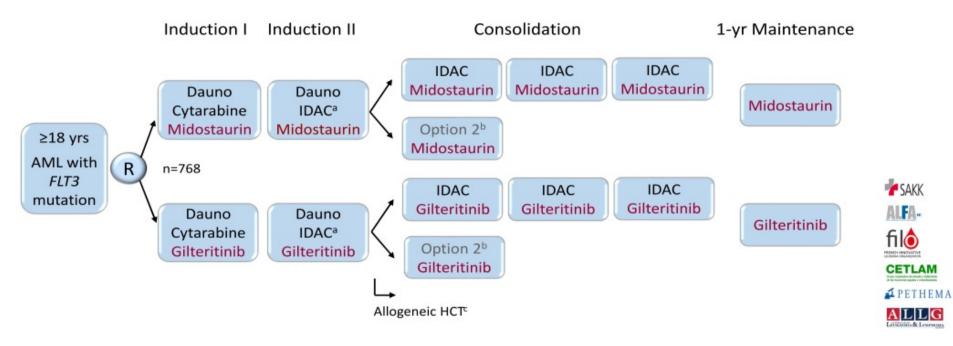
RATIFY: Overall survival (primary endpoint)

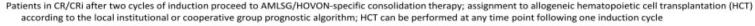


Adapted from Stone et al. 2017

CI, confidence interval; HR, hazard ratio; NR, not reached; OS, overall survival Stone RM *et al.* N Engl J Med 2017;377:454–464

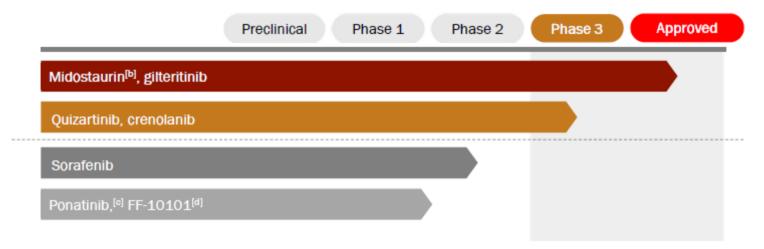
ADMIRAL: Overall survival (primary endpoint)




Two-sided P-values were determined according to the log-rank test; the Kaplan-Meier method in combination with the Greenwood formula were used to determine overall survival and corresponding 95% confidence intervals. Abbreviations: Cl, confidence interval; HR, hazard ratio; ITT, intention-to-treat; OS, overall survival.

AIL President: G. Toro

Midostaurin vs Gilteritinib plus chemotherapy for AML with FLT3 mutation - HOVON 156 / AMLSG 28-18


- ³ IDAC, intermediate-dose cytarabine; age-adapted dosing; no anthracycline ≥60 yrs
- HOVON consolidation: autologous HCT; or mitoxantrone / etoposide
- Maintenance with tyrosine kinase inhibitors (TKI) also after allogeneic HCT

FLT3 Inhibitors in Development

- Midostaurin is a first-generation, multikinase inhibitor^[b]
- Quizartinib^[e], gilteritinib^[f], and crenolanib^[g] are potent and selective FLT3 inhibitors

Other FLT3 inhibitors have entered clinical trials for the treatment of AML, eg, IMC-EB10, KW-2449, FLX925; however, they have been prematurely terminated.

a. Kantarjian H. *Am J Hematol.* 2016;91:131-145; b. Stone RM, et al. *N Engl J Med.* 2017;377:454-464; c. Musumeci F, et al. *Cancers (Basel).* 2018;10:430; d. Yamaura T, et al. *Blood.* 2018;131:426-438; e. Zarrinkar PP, et al. *Blood.* 2009;114:2984-2992; f. Perl AE, et al. *Lancet Oncol.* 2017;18:1061-1075; g. ClinicalTrials.gov NCT03258931.

Press Release – Daiichi-Sankyo 18 NOV 2021

Quizartinib Added to Chemotherapy Demonstrates Superior Overall Survival Compared to Chemotherapy Alone in Adult Patients with Newly Diagnosed FLT3-ITD Positive AML

 Global pivotal QUANTUM First Phase III Trial meets primary end-point for OS

AGILE - Phase III study in IDH1m AML

 Multicenter, double-blind, randomized phase III trial Stratified by region (US/Canada vs Western Europe, Israel, and Australia vs Japan vs rest of world) and disease history (de novo vs secondary AML)

Patients with
untreated AML (WHO
criteria); centrally confirmed
IDH1 mutation status;
ineligible for IC; ECOG PS 0-2
(planned N = 200)

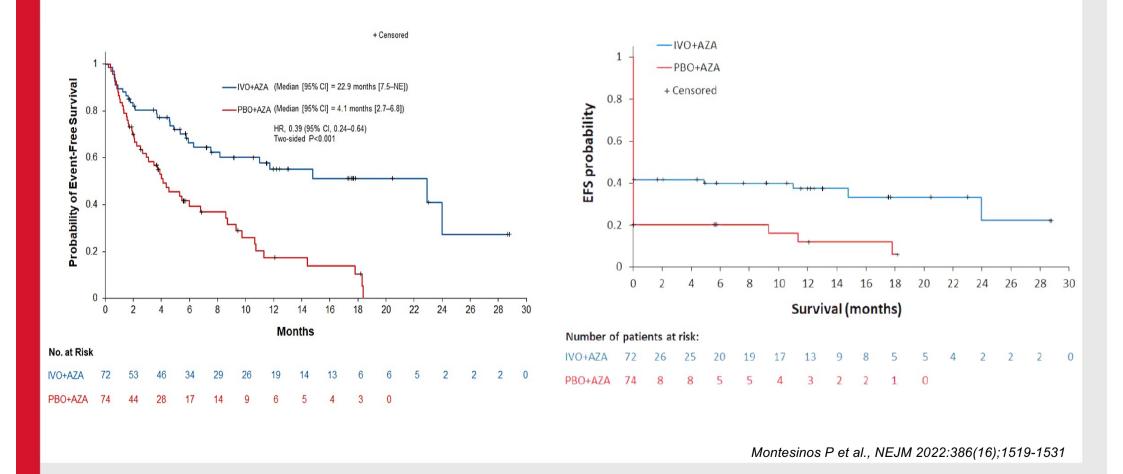
Ivosidenib 500 mg PO QD +
Azacitidine 75 mg/m² SC or IV
(n = 72)*

Placebo PO QD +
Azacitidine 75 mg/m² SC or IV
(n = 74)*

Enrollment at time of data cutoff (March 18, 2021)

- Enrollment halted based on efficacy as of May 12, 2021 (N = 148)
- Primary endpoint: EFS with ~173 events (52 mo)
- Secondary endpoints: CRR, OS, CR + CRh rate, ORR

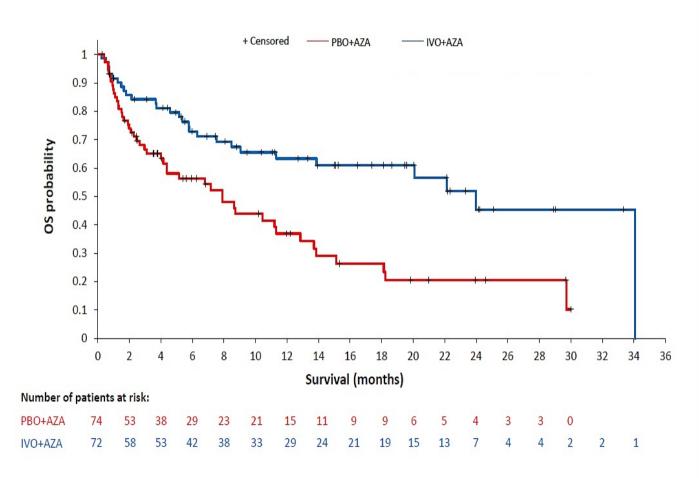
AGILE – baseline Characteristics


Characteristic	IVO + AZA (n = 72)	PBO + AZA (n = 74)
Median age, yr (range)	76.0 (58-84)	75.5 (45-94)
Sex, n (%) • Male • Female	42 (58.3) 30 (41.7)	38 (51.4) 36 (48.6)
ECOG PS, n (%) ■ 0 ■ 1 ■ 2	14 (19.4) 32 (44.4) 26 (36.1)	10 (13.5) 40 (54.1) 24 (32.4)
Disease history, n (%) De novo AML Secondary AML	54 (75.0) 18 (25.0)	53 (71.6) 21 (28.4)

Characteristic	IVO + AZA (n = 72)	PBO + AZA (n = 74)
Median m <i>IDH1</i> VAF in BMA, % (range)	36.7 (3.1-50.5)	35.5 (3.0-48.6)
Cytogenetic risk, n (%) Favorable Intermediate Poor	3 (4.2) 48 (66.7) 16 (22.2)	7 (9.5) 44 (59.5) 20 (27.0)
Median bone marrow blasts, % (range)	54.0 (20-95)	48.0 (17-100)

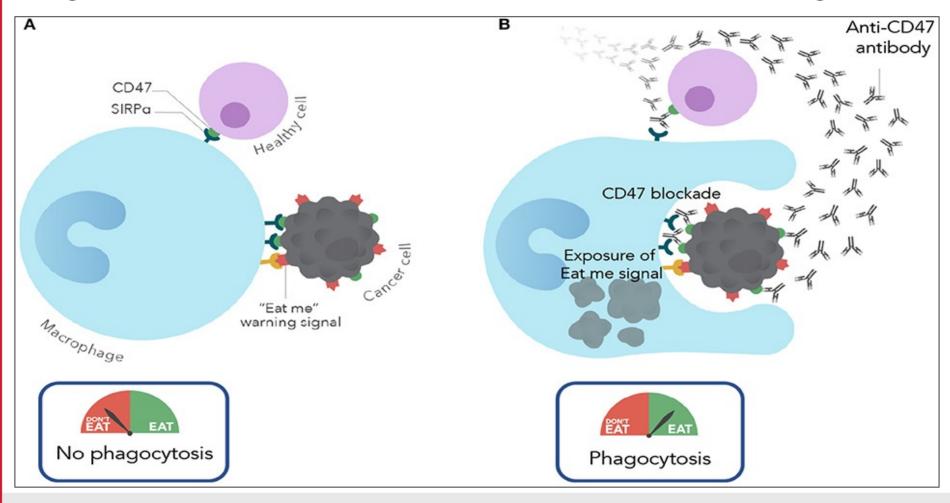
AlL President: G. Toro Coordinators: A.M. Carella, S. Amadori

AGILE - EFS

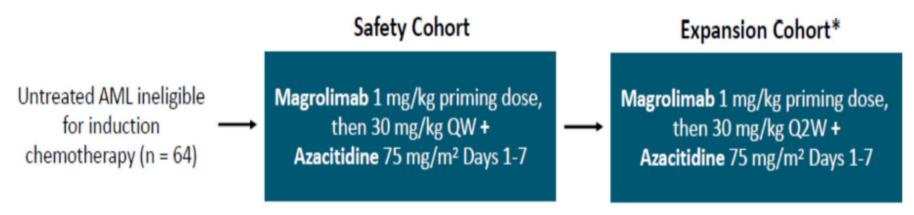


All President: G. Toro Coordinators: A.M. Carella, S. Amadori

AGILE - OS


The **mOS** with IVO+AZA was **24.0 months** vs **7.9 months** with PBO+AZA (HR 0.44, 95% CI 0.27–0.73; two-sided P=0.001)

Montesinos P et al., NEJM 2022:386(16);1519-1531



Magrolimab + Azacitidine in Untreated AML: Background

Magrolimab + Azacitidine in Untreated AML phase Ib Study Design

*Data presented from AML expansion cohort.

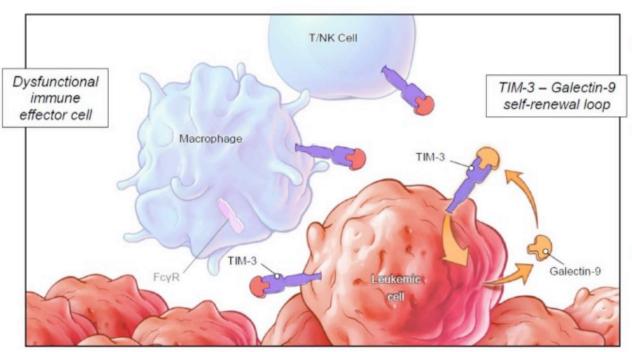
- Primary endpoints: safety of magrolimab alone or with azacitidine; efficacy of combination in untreated AML/MDS
- Secondary endpoints: magrolimab PK, PD, immunogenicity
- Exploratory endpoints: CD47 receptor occupancy, immune activity biomarkers, molecular profiling in AML/MDS

Sallman DA, et al. ASH Meeting 2020, Abstr no. 330

Magrolimab + Azacitidine: Efficay

Outcome	All AML pts (n = 43)	<i>TP53</i> -mutant (n = 29)
ORR, n (%) CR CRi PR MLFS	27 (63) 18 (42) 5 (12) 1 (2) 3 (7) 14 (33)	20 (69) 13 (45) 4 (14) 1 (3) 2 (7) 8 (28)
■ PD Median time to response, mos (range)	2 (5)	1 (3) NR
Median duration of response, mos	9.6	7.6
Complete cytogenic response, n/N (%) MRD negativity in CR/CRi, n/N (%)	9/20 (45) 8/23 (35)	7/16 (44) 5/17 (29)

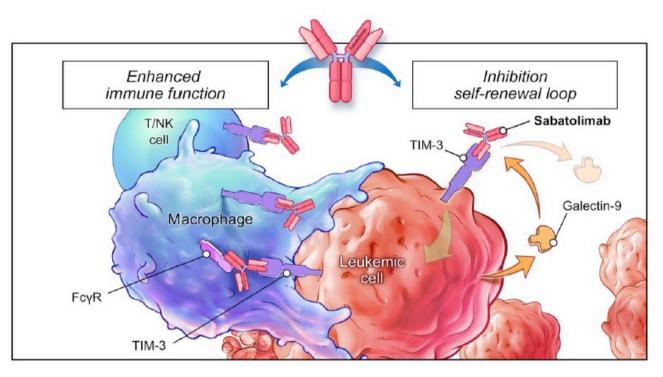
- 9.6% proceeded to bone marrow stem cell transplant
- High rates of red blood cell transfusion independence (68% in all AML, 63% in TP53-mutant AML)
- Multiple patients deepened their response over time on several months of therapy


Magrolimab + Azacitidine: Preliminary Os

AlL President: G. Toro
Coordinators: A.M. Carella, S. Amadori

TIM-3 is an inhibitory receptor expressed on immune and leukemic cells

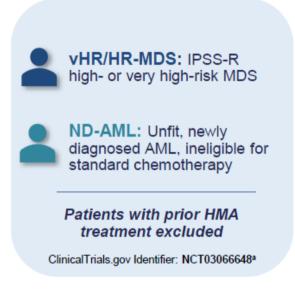
TIM-3

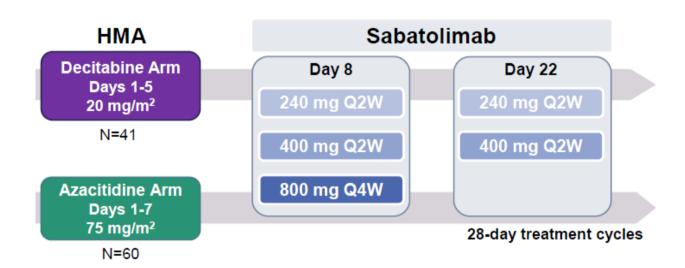

- Involved in regulating innate and adaptive immune responses^{1,2}
- Aberrantly expressed on LSCs and blasts, but not on normal HSCs,¹⁻⁵ making it a promising target in MDS/AML^{2,4,6}
- TIM-3/galectin-9 interaction forms an autocrine stimulatory loop promoting LSC self-renewal^{2,7,8}

AML, acute myeloid leukemia; HSC, hematopoietic stem cell; LSC, leukemic stem cell; MDS, myelodysplastic syndrome; NK, natural killer; TIM-3, T-cell immunoglobulin domain and mucin domain-3.

1. Pardoll DM. Nat Rev Cancer. 2012;12(4):252-264; 2. Das M, et al. Immunol Rev. 2017;276(1):97-111; 3. Kikushige Y, Miyamoto T. Int J Hematol. 2013;98(6):627-633; 4. Kikushige Y, et al. Cell Stem Cell. 2010;7(6):708-717; 5. Ngiow SF. Cancer Res. 2011;71(10):3540-3551; 6. Sakuishi K, et al. Trends Immunol. 2011;32(8):345-349; 7. Sabatos-Peyton C. AACR 2016. Oral presentation; 8. Borate U, et al. ASH 2019. Oral presentation.

Sabatolimab targets TIM-3 on immune and leukemic cells


- Sabatolimab binds TIM-3 on immune cells, which enhances antileukemic immune function and phagocytic killing of LSCs and blasts¹⁻⁴
- Sabatolimab directly targets TIM-3 on LSCs, inhibiting TIM-3/galectin-9-driven self-renewal^{1,2}


Acharya N, et al. J Immunother Cancer. 2020;8(1):e000911;
 Sabatos-Peyton C, et al. SITC 2020. Abstract 439;
 Borate U, et al. HemaSphere. 2020;4(suppl 1):Abstract S185;
 Borate U, et al. EHA 2020.

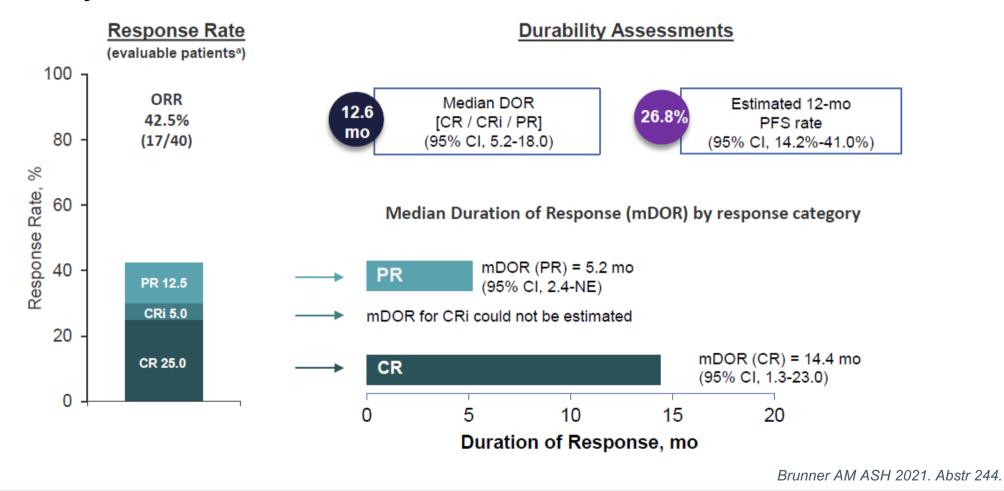
Oral presentation.

Phase Ib study of Sabatolimab in high/very high-risk MDS and AML

Primary Endpoints:

Maximum tolerated dose/recommended dose, safety, and tolerability **Secondary Endpoints:**

Preliminary efficacy: Response rates and duration of response



Patient Characteristics

Parameter			ND-AML n=48
Sabatolimab + decitabine, n			22
Sabatolimab + azacitidine, n			26
Median age (range), years			75 (59-89)
Male, n (%)			26 (54.2)
ECOG performance status, n (%)		
0			14 (29.2)
1			29 (60.4)
2			5 (10.4)
Risk Category n (%)			2017 ELN risk ²
			Intermediate: 18 (37.5)
			Adverse: 30 (62.5)
Select available mutation data:	TP53 (n)	≥1 ELN	adverse risk mutation (n) ^a
ND-AML (n=33b)	6	14	

Efficacy Data

Conclusions

- Adaptive or innate immune system harnessing therapies
 - ✓ BiTe (AMG330 Anti-CLEC12A)
 - ✓ CAR-T; CAR-NK; (> 20 ongoing AML CAR-T CT registered with clinicaltrials.gov)
 - ✓ Vaccines
- Radioimmunetherapy in AML (α-particle emitting radionuclides)
 - ✓ actinium-225 (²²⁵Ac) or astatine-211 (²¹¹At)
- Chemoresistance and microenviroment in AML
 - ✓ Adrenomedullin
- Therapeutic potential of genetic reprogramming of LSC